Practical Problems in Customer Data - A Use-Case-Driven
Classification

Jan-Lucas Deinhard ®!2 and Richard Lenz ®!

Abstract: This article presents a comprehensive analysis of data quality issues encountered in
customer data at large enterprises. This analysis is based on data collected at a large medical
technology manufacturer, and the problems observed there are clustered into distinct classes. Through
this classification, nine key prevention requirements can be identified which are essential for improving
data fitness. These include changes to data governance and to data architecture, among others. An
evaluation of existing tools against these requirements furthermore highlights notable solutions.
Despite the availability of numerous tools, gaps remain, especially regarding integration of all
functionalities. Our findings suggest that while industry-standard solutions are accessible, integrating
them into a cohesive framework posed significant challenges in our use case, necessitating continual
adjustments to data architecture and processes to enable and maintain high quality of data.

Keywords: Data Quality, Data Architecture, Industry Case Study

1 Introduction

Research about data quality (DQ) often centers on generic descriptions of the different ways
in which data can show defects, such as correctness or timeliness. This categorization of
problems into larger classes is crucial, but omits an important factor: Many of the problems
observed in large data architectures, in particular at large international enterprises, are
mere symptoms of an underlying problem. The root-cause may lie deeply hidden in the
architecture, or consist of a defective business process, and might not be immediately obvious.
Yet, repairing this root-cause may fix a number of symptoms permanently. This relationship
between architecture, root-cause analysis and low data quality at the data-consumer-side
is often not adequately captured in state-of-the-art DQ analyses. Once the underlying
root-causes are identified, it often becomes a simple matter to increase DQ sustainably by
selecting the appropriate tool to prevent any further issues. Usually, the market already
offers such tools. With this paper, we aim to build on our experiences from an industry case
study at Siemens Healthineers (SHS), a large German manufacturer of medical technologies,
to develop such a architecture-focused and root-cause-centered understanding of DQ. SHS
provided access to their operational Customer Relationship Management (CRM) system
for our research, so we focused mainly on DQ in CRM data. It stands to reason that other

Friedrich-Alexander-University Erlangen-Nuremberg, Chair for Data Management, Martensstrae 3, 91058
Erlangen, Germany, jan-lucas.deinhard @fau.de, @ https://orcid.org/0009-0005-5235-9271;
richard.lenz@fau.de, © https://orcid.org/0000-0003-1551-4824

Siemens Healthineers AG, Commercial Excellence Department, Siemensstrale 3, 91301 Forchheim, Germany,
jan-lucas.deinhard @fau.de, © https://orcid.org/0009-0005-5235-9271


https://orcid.org/0009-0005-5235-9271
https://orcid.org/0000-0003-1551-4824
mailto:jan-lucas.deinhard@fau.de
https://orcid.org/0009-0005-5235-9271
https://orcid.org/0009-0005-5235-9271
mailto:richard.lenz@fau.de
https://orcid.org/0000-0003-1551-4824
https://orcid.org/0000-0003-1551-4824
mailto:jan-lucas.deinhard@fau.de
https://orcid.org/0009-0005-5235-9271
https://orcid.org/0009-0005-5235-9271

data infrastructure systems show similar patterns of problems and problem clusters as those
which will be outlined herein, especially if they share the core characteristic of human data
sources and data sinks with the system available at SHS. With that, this paper is primarily
focused on answering three questions:

. Research Question R1: 7o which extent can data problems in CRM data and their
root-causes be clustered into generic problem classes?

. Research Question R2: Which tools and technologies exist as industry standard for
such classes of data problems?

. Research Question R3: Are there any classes of problems which are difficult to
address with existing standard industry solutions?

A data problem in this context is defined as diminished fitness for use, i.e. as an aspect of the
data which affects the information consumer and which prevents them from accomplishing
their intended goal with the data[25]. A class of data problems clusters multiple data
problems of the same sort into a more abstractly defined class and will be sufficiently generic
that it applies to a broader context outside of the SHS case as well.

This paper approaches these questions through a case study of the data infrastructure built
around CRM data and reporting at SHS. We examine R1 based on a long-term observation
and documentation of the data problems at SHS. These results are captured, integrated and
evaluated, yielding different categories of problems. Those can be interpreted as problem
classes. For those data problems, the solutions eventually adopted by the data teams at SHS
are also evaluated and clustered, which allows us to compose a list of prevention measures.
Building on that list of prevention measures, this paper reviews tools commonly available for
those measures as an industry standard, thereby answering R2. Any identified blind-spots
will allow us to answer R3.

2 Literature Review

The topic of DQ is commonly understood by researchers in terms of fitness for use[25]. In
this landmark 1998 publication, the authors outline several concepts which are today taken
as cornerstones when approaching the topic, one of those being fitness for use as the defining
characteristic for the quality of an information asset. Other important concepts are the
perspective of information manufacturing as analogous to the manufacturing of products, and
the Total Data Quality Management (TDQM) approach for improving DQ, which is based
on these understandings of data and information quality. This information manufacturing
perspective sees information or also the data assets as the result of a production chain
which starts with raw data, processes this through the information systems, and arrives at
information products at the end. Such a description takes a first step towards emphasizing
the root causes leading to low DQ, which are hidden in the data production process. The
fitness for use idea encourages capturing DQ issues close to the data consumer, which can



then be further clustered into larger domains and classes of problem areas. A first attempt
at this was made in [23] and [26], which both precede many of the above publications
but already had adopted these core concepts. Both publications aim at identifying what
they call DQ Dimensions [23]. The latter publication builds on the former and shows
that an understanding of DQ broader than just in accuracy terms helps businesses better
understand and improve business outcomes. Both publications come to adopt a similar
taxonomy of DQ Dimensions. The authors in [26] break DQ into the areas of Intrinsic
DQ, Contextual DQ, Representational DQ and Accessibility DQ, which they then refine
further into sub-categories such as Completeness, Timeliness, Accuracy, Consistency, etc.
In [23], the authors distinguish an internal view of DQ which is related to design and
operations, and an external view of DQ related to data use and value. Both classes further
break down into data-related problems and system-related problems. These categories then
split into similar detail items as in [26], with the most important ones being accuracy,
completeness, consistency, currency, relevance, reliability and timeliness. Since then, other
DQ Dimensions have been proposed by multiple authors. A more recent survey compiled a
comprehensive list of the accepted dimensions and their use throughout literature[24]. The
authors identify 21 relevant dimensions which are used, not always under the same name, to
cluster DQ. For each dimension, they list the publications where they were used. Accuracy,
completeness, relevance and timeliness remain the most frequently used dimensions. These
same dimensions can also be confirmed to be applicable for the currently important field of
big data, where similar dimensions are encountered and retain their relevance[5]. Building
on this, [8] introduced the information-theoretic Source-Bearer-Receiver model (S-B-R
model) for describing DQ. They outline the difference between problems of low DQ, which
they see as inherent to the data, and problems of low information quality (1Q), which is
inherent to information instead. The former is related to problems within the bearer system,
whereas the latter is caused by the quality of the links between the source and bearer, or
the bearer and receiver. These publications propose at least a thematic clustering of DQ in
terms of effects on the data consumer, which suggests a positive answer to R1 is a likely
outcome. Their approach however neglects to connect clusters of DQ problems to their
origins within the data environment where they occur, making it challenging to identify
suitable technologies and remedies to combat these problems.

There have been other studies trying to characterize and categorize common problems with
DQ empirically. These usually start from individual case studies at specific organizations
and track concrete problems occurring there over a period of time. For example, one study
investigates DQ at a specific Australian Information Services consulting firm and record
the errors encountered there. The authors classify these errors into error types and also
analyze the impact on operations. The main error types identified in the article are data entry
errors and delays in data processing[21]. Another study examines the causes of insufficient
DQ in medical registries and determines that the main source problems lie in poor setup
and organization of the registry itself, in problems with the data collection process, and
in difficulties with the quality improvement approach[1]. Roots of problematic quality of
data frequently are hidden in the Information Technology (IT) infrastructure or in business



practices at large organizations. A recent survey suggests five core facets of DQ assessment
at large companies: the data facet, the source of the data, the (physical) system, the human
and the task facet[17]. The authors identify specific challenges and opportunities associated
with each of these facets. Each of the facets consequently also represents a potential source
for DQ problems. In spite of the well-established costs of defective data, many organizations
still hesitate to invest into improvements. In a 2010 study, [7] examines the reasons why
this is the case. They conducted questionnaires at several companies and asked employees
about their experience specifically of master data at their workplace. Their literature review
and the questionnaire findings imply that there are five major reasons why DQ in master
data is not remedied and improved: a lack of the delegation of responsibilities for master
data, a lack of master data control routines, missing employee competencies, low usability
of the tools used to manage master data and missing rewards for ensuring high quality in
master data. These five barriers are organized in descending manner by their relevance as
identified through the questionnaires. Even with these studies identifying large problem
clusters empirically, we still observe a relative scarcity of literature connecting the problems
to the underlying technological and procedural reasons, or to any solutions. With this case
study, we aim to examine those aspects in more detail.

3 Case Study at Siemens Healthineers

Research questions R1, R2 and R3 as described in Section 1 were examined using a case
study at the Commercial Excellence (CE) department at SHS. SHS is a large manufacturer
of medical technologies based in Germany, with business all across the world. Their CE
department is responsible for enabling efficient global sales operations. To do this, among
other things CE provides a data platform known as the CRM Data Cloud (CDC), which
provides data products as defined by [4] in support of sales managers and analysts, as well
as for corporate management. The CDC is currently in the transition process towards a data
mesh approach where their offering will be based around data products. Notwithstanding
this transition phase, new DQ problems continue to be reported from the side of the data
consumers at a persistent rate.

Sales organizations at SHS are distributed across all countries where SHS is active, and
country sales organizations are grouped into larger zones and regions. Production is based
around a number of different business lines, and country sales organizations coordinate the
customer order from the business lines. The headquarter provides corporate functions such
as the finance, CE or IT organizations. All country sales organizations, business lines and
corporate functions are afforded a great degree of autonomy. This autonomy also extends
to data ownership and governance and thereby affects global information quality at SHS.
The CDC focuses on sales data, but also incorporates data elements from finance and the
service organizations. The sales data originates in the global CRM system which is used by
all countries. The data processing from the source system towards the analytics layer in the
CDC follows a standardized process: The source systems replicates the raw data to a global



Country/Business Line Ownership Finance Ownership Headquarter /CE Ownership

Country 1 ERP
System

— Finance Dala >
Country N ERP Warehouse .
System

s

== —
Business Rules and
| Configuration |

Country 2 ERP
System

CRM System F = Customer Data
Enterprise Data Lake Haicie

IBNW

Data — T

Source
IT Department Ownership Data Sink

Figure 1: Architecture setup in case study at SHS

data lake in fixed intervals multiple times each day, and the CDC performs a full data load
from there, applying preprocessing and business logics before making the data available to
data consumers in the form of data products. Finance data follows a slightly different path
as the source systems are not unified into one overarching global system, but for historical
reasons resides in multiple different systems, each being used by different combinations
of country organizations. Ownership lies with the global finance organizations, and the
various source systems are first integrated by them before replicating this data to the data
lake. From there, the CDC process further integrates this data with other data assets. Once
all data assets are integrated and packaged as data products on the CDC, data consumers
typically connect reporting tools and dashboards directly. For many problems, especially
those related to data semantics, this is the first stage along the data processing pipeline
where quality issues are detected. Fig. 1 outlines this setup.

This brief overview of data infrastructure at SHS shows a technical setup as it is present
at many large international enterprises. The data infrastructure is distributed, and so is
governance and ownership. We will show that the observations at SHS can be generalized
into clusters of DQ problems which are independent of this concrete infrastructure and
require resolution and prevention methods which consequently also apply to other large
companies with similar data architectures. The CE department has been actively tracking
metrics to measure DQ and instituting technologies and processes to improve DQ in
parallel to the build-up of the CDC. Since middle of 2023, these measures also included
the systematic tracking of reports about lackluster quality of the information in the CDC,
as experienced by business users. At the time of writing of this analysis, this means we
have access to a collection of approximately 14 months worth of case reports which reflect
the experience of business users documenting data not fit for use in the CDC. The case
reports were captured in the form of two different schemas over time, as the collection is a
merge of two different report collections. One schema is focused on describing problems in
the form of symptoms and root causes of low DQ and tries to describe the trace of these



types of DQ issues across technical systems and processes. It also captures the resolution
which is eventually used to solve the underlying problem. An overview of this schema is
shown in Fig. 2. This simple schema can capture a wide array of DQ problems reported
by business, and more importantly, relate observations and treatment across the complex
system that is the data infrastructure at SHS. In this schema, DQ Symptoms can be observed
by anyone working with the data, typically by business users or the data team. Root Causes
are identified by the IT department and data teams. They represent the factors which often
cause multiple DQ Symptoms, and which can be characterized as the initial problems which
start clusters of observed symptoms. Resolutions are steps taken to alleviate Root Causes
of problems. All three entities are largely described by a text formulation of the reported
observation or action taken. The Process and Technical System entities describe where in
the data ecosystem these observations were made, or where an action was taken. The second
collection of case reports came from a source which had been purpose-built for reporting
the status of DQ problems to the business community in an automated way. This schema
captured reports in the form of a simple flat table with the following attributes:

. Date Reported: The date and time when the problem had been first reported or
observed.

. Status Type: An indicator of the problem type which is causing the observation, either
Error or Change/Update.

. Title of the DQ Problem: Descriptive title, chosen manually by the member of the
data team to first work on the issue.

. Description: A text description of the issue, typically around three sentences.
. Status: The processing status, either New, In Progress or Completed.
. Resolution: A text description of the steps taken to resolve the issue.

. Assigned to: Reference to the member of the data team responsible for providing a
resolution.

. Data Product: A reference to the affected data products.

The table also had additional columns to link the issue to other systems in use at SHS. To
answer research question R1, a root cause analysis of the problem sources is of particular
importance, we decided to map both case collections to the first schema as described in
Fig. 2. This description approach is largely compatible with the second schema, and highly
useful for understanding the problem source, as root causes are specifically captured as a
distinct entity type. After storing all collected cases in the schema shown in Fig. 2, we were
able to extract a view of the root causes and accepted resolutions, along with the symptoms
observed by business users which prompted them to report low DQ.

The list below shows the collected cases of DQ problems which impacted fitness for use of
the information in the CDC. The list entries are structured as follows:



< caused B b
< subsystem of >

—— DQ Symptom Technical System

~abserved in ™~ N

M
~~._ process "
N "
—|_1

1
Process

< caused by _.".D.t.lEEI'\‘EdiI:]."._ «:::\.mplemerledm.:j»
"-.__S‘,‘stem__.-"
M_~TGbserved in™~_N 1 N | R N
~~._ process "
Resolution

<Z::5.:L.hpmcess nf.:::» Root Cause
Figure 2: Entities and relations used in the schema at SHS to describe cases of observed low DQ.

. <Unique Case Identifier>: <DQ Symptom>. <Root Cause>. <Resolution>.
Affected DQ Dimension: <DQ Dimension Name>

These reports were collected in the time frame between June of 2023 to July 2024.
We also included a categorization of the observed symptoms into the accepted DQ
Dimensions[23][24]. The unique identifier will make it easier to refer to each case in the
subsequent analyses. The subsequent analysis and clustering of problem sources, as well
as the recommended tools and technologies to prevent such issues from affecting business
users and decision making, are based on this case collection.

. Ghost Flag Implementation: This issue was first observed when the value and sold
quantity did not match in BI reports. The root cause was that sales staff had entered
sales opportunities in the source system which later turned out to be irrelevant but
was not flagged as such. The resolution involved implementing multiple SQL rules
for different business segments to flag irrelevant cases through business logic.
Affected DQ Dimension: Consistency

. Change-related DQ Issue: The issue was initially noticed when outdated data
appeared in data products due to a reload failure. This problem arose due to the
redesign of a central workflow, which removed a crucial row filter. To resolve this,
the relevant row filter was added into the redesigned workflow, before merging the
two relevant data sources.

Affected DQ Dimension: Timeliness

. Master Workflow Skips Runs 1: This was identified when outdated last-reload
timestamps appeared in data products due to workflow aborts. Insufficient testing of
an update to a core software component in the production environment had caused



this issue. The resolution involved rolling back changes in CDC workflows.
Affected DQ Dimension: Timeliness

Master Workflow Skips Runs 2: The first symptom was again an outdated last-reload
timestamp in data products due to workflow aborts. Sporadic server connectivity loss
to the workflow execution server had caused the issue this time. It was resolved by
manually re-executing the CDC master workflow.

Affected DQ Dimension: Timeliness

Revenue Duplications — Country Group CG: The issue was first observed when
countries in CG; showed partial differences compared to a reference system. This
occurred because the same data load pipeline from the finance data warehouse to
the data lake was triggered twice without a delta check. It was resolved by manually
purging the data and re-executing the load pipeline.

Affected DQ Dimension: Consistency

Revenue Duplications — Country Group CG;: The first symptom was that countries
in CG, showed no revenue, while a reference system reported revenue. The root
cause was that finance organizations in CG, do not report revenue at the material
number level due to policy. The resolution involved communicating the effects of this
data policy in CG; and the CDC global filtering policy to all stakeholders.
Affected DQ Dimension: Consistency

No Fresh CRM Data in Data Lake 1: This issue was first observed as an outdated
maximum last-updated timestamp in data products. The root cause was a technical
bug in the delta load script, likely due to a coding failure. It was resolved through a
bug fix by the data lake team and the CRM platform team.

Affected DQ Dimension: Timeliness

Data Update Delayed: The problem was first noticed as an outdated last-reload
timestamp in data products due to workflow deadlocks. This issue arose from
overburdening the data lake execution server with long-running queries. The resolution
involved implementing separate execution contexts by the platform provider.
Affected DQ Dimension: Timeliness

Duplicates in Data Product P;: The issue was first noticed when duplicates appeared
in a data product. Root cause was a misconfigured ingestion pipeline by the CRM
platform team. The resolution involved repairing the ingestion pipeline performing
the data pre-processing for the CRM platform.

Affected DQ Dimension: Unigueness

Duplicates in Data Product P;: The issue was detected when duplicates appeared
in a data product. A change in the ETL pipeline introduced a misconfigured joiner.
This was resolved by correcting the joiner configuration in the CDC ETL pipeline.
Affected DQ Dimension: Unigueness



. Data Lake Servers Down: The first symptom was an error message when connecting
to the CDC database. The root cause was a software problem caused by a third-party
vendor. It was resolved through an external software bug fix completed by the data
lake platform team.

Affected DQ Dimension: Accessibility

. Server Issue: The issue was first noticed as an outdated last-reload timestamp in data
products due to workflow aborts. Faulty time synchronization across regions caused
authentication failures between two IT servers for several days. The IT department
resolved this by correcting synchronization and manually reloading subsequent
systems.

Affected DQ Dimension: Timeliness

. No Fresh CRM Data in Data Lake 2: The problem first manifested as an outdated
last-reload timestamp in data products due to workflow aborts. The CRM-to-data lake
ingestion job had been stuck in an infinite loop for several days. This was resolved by
the data lake team, who terminated the job and restarted the ingestion process.
Affected DQ Dimension: Timeliness

We will be referring to this collection of DQ cases as List 3.

4 Clustering the Problem Classes

Starting from this collection of case reports, this paper aims to identify underlying patterns
shared by many of the cases when fitness for use of the data is negatively impacted from
the perspective of the information consumers at SHS. To accomplish this, we propose a
clustering of the problems described in List 3 into larger problem classes. A class is defined
abstractly in [9] as a state of nature that governs the pattern generation process in some
cases. Building on this notion, this paper assigns problem classes which are detached from
the concrete context at SHS and also generalize to similar patterns which can be observed in
other companies and environments. While the classes should therefore be generic in nature,
we at the same time try to make them sufficiently specific to still remain useful in discussing
potential solutions. Tab. 1 lists the problem classes identified for the problems discussed
above. The assigned problem class identifies the underlying issue in a description which is
detached from SHS-specific concerns and can also be applied in other companies. In order
to determine it, we proceeded as follows: First, we identified the root cause of the observed
problem, i.e. the underlying problem which cannot be explained by defective upstream
systems or processes. Then, we restated the root cause in general form by replacing all SHS-
or industry-specific details by generic terms. After all problem classes had been assigned in
this way, we also reviewed the outcome for closely linked classes another time. The resulting
table also includes the measures deemed required for preventing the problem from affecting
end users going forward, as identified by the data experts at SHS, and a clustering of those
requirements into less specific prevention requirement classes.



Problem Class Identifier Prevention Requirement Requirement Type
A-posteriori insuffi- | Ghost Flag Implementa- | Data provenance assessment at launch | Data provenance docu-
ciently defined busi- | tion of data product. mentation

ness activity

Computational re- | Data Update Delayed Metadata monitoring and proactive user | Data observability, auto-

source constraints
exceeded

notification in case of missing updates.

mated notifications

Data standards not
aligned with stake-
holders

Revenue Duplications —
Country Group CG,

Documentation and proactive communi-
cation of data source governance prac-
tices to data stakeholders.

Data governance acces-
sibility

External hardware

Master Workflow skips

Status monitoring of all architecture com-

Data observability, auto-

outage runs 2 ponents and outage handling mated notifications
Server Issue Monitoring of workflow execution, | Status-based jobs moni-
proactive blocking of execution and no- | toring, automated notifi-
tification of stewards. cations
Hardware integra- | No fresh CRM data in | Metadata tracking and monitoring of | Data observability, au-

tion problem

data lake 2

workflow execution, proactive blocking
of execution and notification of stewards.

tomated notifications,
status-based jobs mon-
itoring

Implementation
error.

Duplicates in data prod-
uct Py

Default duplicate check for keys along
the data production chain.

Standardized data test-
ing, metadata tagging

No fresh CRM data in
data lake 1

Metadata monitoring and proactive
reload blocking and notification of key
users.

Data observability, au-
tomated notifications,
status-based jobs mon-
itoring

Pipeline redesign
errors

Change-related DQ Is-
sue

Test environment, default duplicate
check for keys.

Regression testing, stan-
dardized data testing,
metadata tagging

Duplicates in product
Py

Default duplicate check for keys along
the data production chain.

Standardized data test-
ing, metadata tagging

Master Workflow skips
runs 1

Test cases, Test Environment, compo-
nents regression testing.

Regression testing

Manual process step
error

Revenue Duplications —
Country Group CG

Pipeline architecture which natively em-
beds delta check when reading in new
data, identify and remove manual pro-
cess steps.

Data observability, data
architecture

Software
tion issue

integra-

Data lake servers down

Integration testing process on Snowflake
side, proactive user notification on SHS
side.

Automated notifications

Table 1: Clustering into Problem Classes.




It stands out that the compression factor of this clustering is limited: 13 observed problems
lead us to extract 9 different clusters. On the one hand, this suggests a broadly distributed
nature of root causes of DQ problems at SHS. On the other hand, it prompted us to try and
further generalize our observations. In our effort to approach a true taxonomy rather than
just a list of issues, we noticed that the identified problem classes assigned in Tab. 1 seem to
further fall into two very different categories: Technical Problems and Business Problems.
This allows us to neatly categorize the DQ problems along the lines shown in Fig. 3. The
classification into both classes is largely self-evident. Both classes can be defined as follows:

. Technical Problem: Cases where DQ problems were caused by a technical mal-
function, outage or error by a technician.

. Business Problem: Cases where faulty, incomplete or missing business problems or
communication led to low DQ.

This clustering can be considered
an answer to R1. Based on obser-
vations at SHS, a number of re-
occurring problem classes can be
identified and further segmented
into the large problem classes
of Technical Problems and Busi-
ness Problems. This taxonomy is
based only on the data collected
at SHS, and the limited scope of
this available data set makes fur-
ther quantitative assessment of the
outcome challenging. Our find-
ings can likely be further refined
and extended by carrying out cor-
responding studies at other suf-
ficiently large companies. As a
last note on this topic, it is worth
pointing out that when the symp-
toms of low DQ are clustered into
the established DQ Dimensions
as shown in List 3, an interesting
correspondence between the DQ
Dimensions and the categoriza-
tion of Technical Problems and
Business Problems in Fig. 3 arises:
Symptoms caused by the Business
Problems category seem to reli-

—{ DQ Problem J

[ Technical Problem ] [ Business Problem ]

Pipeline re- ) A-posteriori
— design imple- — insufficiently defined
mentation error. | business activity.
| [ Initial build imple- | Manual pro-
| mentation error. | [|  cess step error.
| | Software inte- Data standards
| gration problem. | L} sjioned with
- N data stakeholder.

Hardware inte-
gration problem.

External hard-
ware outage.

Computational
— resource con-
straints exceeded. |

Figure 3: Taxonomy of DQ issues observed at SHS, catego-
rized as Technical Problems and Business Problems.

ably lead to violations of the Consistency dimension, whereas symptoms related to Technical



Problems are associated with a wider range of DQ Dimensions and lead to violations in the
domains of Accessibility, Timeliness and Uniqueness. The most-observed problem from a
data consumer perspective was a Timeliness problem, although this is likely a consequence
of the data architecture specifically at SHS and not indicative of a general trend.

5 From Clusters to Solutions

Many of the problems listed in List 3 already have well-established solutions, usually
based around improvements to the data architecture. For the sake of compactness, the
prevention measures which were identified at SHS are directly attached to Tab. 1, along
with a categorization into classes of prevention measures which follow the understanding of
classes which was also used in extracting the problem classes above. The measures listed in
this publication were the result of expert review of the problems by the CE data team at
SHS. Parts are already deployed, other measures are in the implementation phase. Many
of the problems listed require the launch of several different solutions to comprehensively
remedy the underlying defect. The overall set of prevention requirement classes however
can be distilled to nine items. The following is a brief description and discussion of these
items and why they were identified:

Automated Notifications: There is a strong need for a tool or framework to automatically
notify specific user groups of technical status anywhere along the data production process.
Solutions for this exist and cover surveillance of parts of the data production process, as well
as notification of parts of the set of all users, but definition of any additional check is usually
a manual process, and no comprehensive tool exists. This is of particular importance in the
case of technical problems which cannot be foreseen and therefore need a comprehensive
reporting concept.

Data Architecture: Choosing the right data architecture can remedy several problems.
There is plenty of literature discussing different data architectures [2][14][12][19] and data
warehouse architectures [10][16]. Two key requirements to data architecture in the case
at SHS were simple in nature: Remove all manual processing steps from the overall data
architecture and select an architecture built around change-data-capture[20]. Both features
can prevent unforeseeable errors springing from human error.

Data Governance Accessibility: Data governance efforts do exist at SHS and impact many
segments of the data production process. The standards set by governance teams however
seem to be inaccessible to many data consumers and especially to potential data consumers
who perform exploratory data analysis with new use cases in mind. Documentation is
distributed and access to the guidelines often is synonymous with access to the governance
experts. A wholistic and easily accessible data governance platform which is targeted at
non-expert data consumers across the organization and technical teams alike can prevent
the business from mistakenly committing to investment based on faulty expectations about
data and data quality.



Data Observability: Among the most critical prevention requirements identified by us, data
observability as understood by [18] has the potential to remedy both technical and business
problems. Data observability refers to tools which can monitor the data production process
and visualize the current status in an easily accessible way. As such, data observability is
closely linked to data lineage, metadata tracking and status monitoring of data processing
workflows. Full data observability hence relies on an already highly sophisticated data stack.
With these aspects available however, data observability tools make the results available to
a broad audience at low latencies and thereby contribute to a broad understanding across
the organization of what data can do, and what the current status of the data products is.
Many unforeseeable errors and outages can be reported directly to the affected users in
near-real-time, mitigating the impact.

Data Provenance Documentation: Similar to data governance, our observations also
indicate the need for a comprehensive and accessible documentation of the origin of data.
In most data architectures, data provenance as defined in [6] is partially documented and
often closely tied to data lineage[15]. At SHS, documentation is fractured among multiple
teams, and occasionally does not exist in any explicit form but depends on data or domain
experts. A system which makes the data provenance fully transparent to use-case owners in
business functions can prevent them from relying on data for decision-making which might
be available but is not fit for use when contextualized.

Metadata Tagging: This requirement refers to the need for a structured metadata repository
of the data products available to the data teams, where the most important data attributes
are tagged with respect to important properties, e.g. as primary keys or also as personally
identifiable data. This in combination with the standardized data testing requirement allows
the default checking of primary key fields for duplicates, leading among other things to an
early detection of cases of duplications.

Regression Testing: This analysis technique stores inputs and outputs to production software
components as test cases and runs these test cases on the software component in case of any
change to the component, triggering an alert if the actual output deviates from the stored
expected output[22]. It is a well-established and popular dynamic testing technique in the
field of software development, and holds particular appeal for developing data processing
software, where snapshots of data input frames along with the expected data output can be
captured and stored quite easily. If an automated regression testing framework were in use
in the various software development teams, the CI/CD (Continuous Integration/Continuous
Development) process could detect damaged software much more easily and ideally prevent
the deployment of those components altogether.

Standardized Data Testing: A standardized data testing requirement refers to the need for
a framework which allows the low-effort definition and execution of simple tests on data
as it is being processed through the IT systems. In the observations at SHS, very simple
tests such as row count continuity over time can already detect most issues. Usually the
problems uncovered by this technique have technical origins, mostly implementation errors



during software design or refactoring. If data engineers had access to a tool which allows
them to set up a number of standardized tests on the data when initially creating the data
pipeline, and these tests were evaluated every time when the data is reloaded, many of these
implementation error could be caught before they ever could affect data consumers. Such
a tool could be combined with regression testing into a testing framework, saving data
engineers a lot of time which they now spend manually setting up such tests.

Status-based Jobs Monitoring: The above observations at SHS also suggest the need
for a comprehensive monitoring solution which tracks data processing jobs based on their
status, and can potentially handle any failures or interrupts. Similar to some of the items
mentioned before, this already exists in part for certain segments of the data infrastructure.
A comprehensive solution from data source to data sink however is not available. Also,
many of the solutions currently in place focus on reporting of job statuses and do not have
the capability of handling failed processes safely. Extending the data stack with a reliable
tool to do that is one of the few options which can prevent random server outages occurring
outside of the organization from impacting data consumers in the organization.

All of the prevention methods listed already exist as industry solutions. A discussion of
suitable tools and providers will follow in the next section of this paper. However, none
of the available options have so far been implemented at SHS. This is fundamentally due
to two reasons: On the one hand, the data architecture at SHS is a typical evolved data
architecture and other, more foundational problems took up the spotlight until this point. As
a consequence, many ad-hoc partial solutions were deployed and are in operation until now,
treating a large part of the DQ problems which typically arise, but not in a comprehensive
way. These solutions have already decreased the impact of the various technical and business
problems in the data processing pipelines on information consumers to an acceptable level.
When considering how to further improve DQ, this is always in reference to a status quo
where most of the easy and high-impact challenges have already been confronted and
solved. As a direct consequence of the interplay of these different and uncoordinated ad-hoc
solutions however, many of the leftover disruptions to the day-to-day work with the data and
information cannot be repaired easily, which often impairs especially the discovery of new
use cases and the ability to scale up. On the other hand, the data processing infrastructure
is not in the scope of a single team at SHS. While this might be different in some other
companies, it stands to reason that in most sufficiently large organizations, data architecture
is sufficiently complex to demand distributed responsibilities, and the process of scaling
up will necessitate the integration of a multitude of historically evolved ownership and
management structures. This means different teams with different goals need to grow
together and align on a shared strategy before any comprehensive solution can be planned or
deployed. SHS is currently approaching a point where both the architecture and ownership
structures are sufficiently mature and extensive so that the search for comprehensive solutions
makes sense. This is indicated by the emergence of a common data quality strategy as a
collaborative project in the data architecture community. The solutions which have been
proposed above in particular require the collaboration of the CE data team which works



% Prevention Method %

Detection [Root-Cause Treatment] [ Warning J
Technologies
Data Architecture ] Automated
{ Data Observability J Notifications
Data Governance ’
{ Metadata Tagging J Accessibility
{ Regression Testing } Data Provenapce ’
Documentation
Standardized
Data Testing
Status-Based
Jobs Monitoring

Figure 4: Categorization of Prevention methods.

together with the SHS business community to identify use cases, the IT team responsible
for the data lake, and the teams of the various source systems.

Interestingly, the prevention requirement classes group into larger established categories
in a way parallel to the clustering of problem classes into the taxonomy shown in Fig. 3.
The different classes align along categories which most data engineers and architects would
likely naturally understand: Some items are focused on Detection of DQ problems, others
on Warning the data consumer of potentially defective data, and others on Root-Cause
Treatment. These superordinate classes may be defined in the following way for our purposes:

. Detection Technologies: These prevention requirement classes enable the automated
finding of defective data as early in the data processing architecture as possible, ideally
near to the root cause of the problem. They can be followed by Warning solutions to
notify key stakeholders.

. Root-Cause Treatment: Classes in this category are intended to fix the underlying
issue which leads to the defective data in the first place. They will typically target an
organizational process or piece of technology.

. Warning: These items are aimed at providing an easy method to warn users of broken
data somewhere in the data production process, ideally before it impacts their work
or information products.

Note that the distinction between the Detection Technologies and Warning classes consists
mainly in the active or passive mode of reporting. The Defection methods help data engineers
find problems once they have been identified, whereas Warning methods proactively alert
the data engineering team. Fig. 4 shows how the specified prevention types cluster into



these classes. This clustering also allows one final observation when relating the Detection
Technologies, Root-Cause Treatment and Warning classes in Fig. 4 back to the problem
classes outlined in Fig. 3. Grouping these problem classes and their associated types
(Business Problem or Technical Problem) by the type of prevention requirement selected by
SHS to remedy the problem shows that Root-Cause Treatments are only really deemed a
requirement for the case of problems identified as Business Problem. A majority of these
problems requires steps taken to remedy the problem at source, whereas the great majority
of problems associated with the Technical Problem type can be prevented from affecting
users simply through adequate detection and warning prevention. Tab. 2 shows this effect.
It charts the resolution used to solve problem types at SHS CE department, along with
count of individual problem classes which called for a prevention requirement of that type.
Technical problems usually require warning or detection technologies, whereas business
problems usually need a root-cause treatment. Solutions targeting the root cause of observed

Resolutions needed to

treat different problem
types.

Problem Type: Busi-
ness Problem

Problem Type: Techni-
cal Problem

Detection Technologies | 1 6
Root-Cause Treatment | 3 0
Warning 0 5

Table 2: Prevention Requirement Types.

low fitness for use are typically more expensive both in terms of time and resources, and
this analysis suggests that organizations can save on their DQ budget by understanding
whether problems originate in problematic business processes (Business Problem type) or
whether the source lies in the technical infrastructure (Technical Problem type). In the latter
case, a comparatively cheaper detect-and-flag approach, combined with early warning of
downstream product owners, could suffice.

6 Existing Solutions and Open Questions

In the following, we will examine which solutions exist for the problem classes which have
been outlined in the previous section. Note that we do not claim to provide a comprehensive
review of all tools on the market. We only intend to outline standard tools which can be
used to address certain classes of problems which have been identified and yielded critical
requirements at SHS. These requirements which were described in the previous sections are
usually not directly part of the publicly available marketing materials for these tools in the
wording chosen for this article, so in order to identify a viable set of tools we decided to



first map them to common functionalities which DQ tools offer, then identify tools which
provide these functionalities, and finally determine through a closer inspection whether
the selected tool really satisfies our requirement. We also decided to treat the question of
appropriate data architecture as an exception, since data architecture insufficiencies are not
related to the available tooling. Data architecture requirements will be discussed further
below. The requirements were mapped to tool functionalities as follows:

. Automated Data Testing for Automated Notifications, Standardized Data Testing and
Regression Testing.

° Data Governance Documentation for Data Provenance Documentation and Data
Governance Accessibility.

. Data Observability for Data Observability, no mapping needed.
. ETL Pipeline Monitoring for Status-Based Jobs Monitoring.

° Metadata Management for Metadata Tagging.

For each of these functionalities, a large online search engine was fed with the search term
functionality + ’ tools’, and the top-3 pages conformant to our non-exclusion criteria were
used to obtain a list of viable tools available on the market for these functionalities. The
non-exclusion criteria were a set of conditions identified by us prior to conducting the online
search in order to establish relevancy of the compiled results. Relevancy was defined as all
tools found on web pages which

(a)  were accessible without a subscription or other form of payment.
(b)  were not sponsored content.

(c)  carried a timestamp from the year 2024 (current calendar year at the time of writing).

Pages which violated any of these criteria were omitted from the analysis. From the pages
which did not violate any of these conditions, we selected the three most well-known tools
mentioned on these pages. This limited perspective on only the top-3 most well-known
entries was imposed to focus on important tools and not have the analysis become to broad
to yield actionable insight.

The generated list was then assessed with respect to their capabilities specifically for the
requirements outlined in the previous section, which are needed at SHS. The result of this
review is charted in Tab. 3. The first column lists all the tools found with out above-described
search method, all subsequent columns show the availability of our requirements in the
corresponding tools. For the sake of legibility, we used a shortened encoding to denote
requirement names in the column headers. The mapping to the requirement references used
above can be found in the footnotes of Tab. 3.

The data collected in Tab. 3 clearly shows that solutions exist for all the requirements
identified before which could improve DQ as experienced by data consumers at SHS. There



Tool AN DGA DO DPD
Alation Platform — — _ _
Apache Air Flow — v X v
Atlan — — — _
AWS Glue — — _ _
Azure Factory — — — —
Chronos — — — _
Collibra — v — v/
Dataedo —
DataGaps v

DBT v — — _
Google Cloud DF —

Great Expectations — — X —
Hevo Data —
iceDQ v — _ _
Informatica v

Io-Tahoe — _
Jenkins — —
KNIME — _
Metaplane — —
Monte Carlo
Open Lineage —
Oracle MM
Query Surge
RightData
Sifflet
Snowflake
Soda
Talend

v
Reviewed Tools 7
Feature Covered 7

RT SBJM | SDT

|
LIS TS
|

SIS YN

|
LN
|

|

|
NENENE

|

| > |
|
IRNE

ANENN

SN

X _
7 7
5

|

|

|
SN S NN N RN E

ISENIRNERRIE
|
ulal|N ][] ]
©
a2 x]| |

4 8

Table 3: Review of tools available on the market which offer functionalities relevant to the pre-
vention methods discussed above. A check-mark signals that the corresponding tool was tested for
the functionality needed at SHS and found to provide an adequate solution, whereas a cross-mark
signals tools which were reviewed for that functionality and found to be insufficient. A dash is used
when the corresponding tool was not reviewed for that functionality. Abbreviations: AN=Automated
Notifications, DGA=Data Governance Accessibility, DO=Data Observability, DPD=Data Provenance
Documentation, MT=Metadata Tagging, RT=Regression Testing, SBJM=Status-based Jobs Monitor-
ing, SDT=Standardized Data Testing.

are actually tools which cover the set of requirements quite extensively. While not all
tools were reviewed with respect to all features due to resource constraints (a horizontal
dash in Tab. 3 indicates no analysis performed, and not that the feature is missing, see
footnotes to Tab. 3), several tools do stand out. The most comprehensive solution reviewed



by us is the Informatica tool suite. They offer a broad variety of data governance and
metadata management solutions, and even some regression testing capabilities. Informatica
is not typically classified as a data observability tool, so it is not surprising that they
lack capabilities in that domain. Also, while Informatica does offer its own version of
jobs scheduling and monitoring, external data production pipelines cannot directly be
orchestrated and monitored in the tool. Tab. 3 shows that there are other solutions to that
end. For instance, Monte Carlo offers a widespread data observability solution and DBT
implements Status-Based Jobs Monitoring. When looking at the total count of tools in
which each feature is covered, it becomes apparent that none of the needs at SHS completely
lack a solution. We can, however, identify requirements which are only covered in part of
the tools reviewed for these features. Among the most important are Regression Testing
and Standardized Data Testing. Regarding data architecture, the problems at SHS arose
from manual process steps, and from full data loads rather than change-data-capture. In
principle, all modern data architectures surveyed in literature are compatible with these
needs, and especially the elimination of remnant manual process steps must remain an
important goal in going forward. In a survey of data warehouse architectures, [27] classifies
all existing approaches. Neither pipeline automation nor change-data-capture appear as a
relevant classification feature, suggesting that these requirements are not tied to specific
architectures. However, a detailed capture of data-pipeline-related metadata is proposed
in [11] as a first important step in the direction of full pipeline automation as part of their
automation concept. This type of metadata can be collected and seamlessly integrates
with other data governance projects which aim at compiling and documenting metadata.
Change-data-capture methods are also available independent of architecture. One proposal
implements this technology using Apache Spark in a Hadoop Distributed File System and
finds a significant decrease in processing time[3]. At SHS, we recommended integrating
both changes to data architecture with an on-going effort to convert the existing three-tiered
data warehouse into a Data Vault architecture[13]. Change-data-capture and full process
automation are integral parts of this analytics setup and the associated data warehouse.

Given the case study at SHS, we can therefore answer research question R2 with the list
of tools listed in Tab. 3. These providers offer industry-standard solutions for the required
technologies, and they do not leave many gaps in the market. Research question R3 asks if
there are any blind spots which are impossible or difficult to cover, given what the market
offers, and this seems to not be the case. However, we can point to several features such as
support for Regression Testing and Standardized Data Testing which are still missing in many
of the reviewed tools. Furthermore, none of the tools surveyed meet all the requirements,
making the integration of these products into a comprehensive DQ framework for any given
organization - SHS in our case study - a complex and potentially challenging task.

7 Conclusion

We have outlined in this article an empirical analysis of the DQ problems in large companies,
as observed in a case study at a large German medical technologies manufacturer. We have



proposed a classification of the underlying causes leading to low data quality downstream
into problem classes which are independent of specific architecture, and we have further
mapped these categories to the required prevention strategies. In addition, we have conducted
a market analysis to determine whether the technologies required for prevention of the
identified problem classes already exist, or whether there are gaps in existing solutions. We
find that the market provides tools in response to all identified needs, but that no single
solution offers a comprehensive remedy. This analysis allows us to answer the initial research
questions R1 positively, problems with DQ in CRM data do seem to cluster into different
classes. Question R2 is answered by a market analysis, and regarding R3 we cannot find a
relevant market blind-spot. These conclusions are based on one case study, so in order to
generalize these results, similar analyses at other large companies are needed. Going forward,
this empirical approach to identifying and fixing underlying issues will contribute not only
to benefit enterprises with higher-quality information, but can also help researchers enrich
the currently accepted DQ Dimensions with findings based in an architecture-centered
understanding of data as it prevails in data engineering teams across industry.

References

[1] Danielle GT Arts, Nicolette F De Keizer, and Gert-Jan Scheffer. “Defining and
improving data quality in medical registries: a literature review, case study, and
generic framework™. In: Journal of the American Medical Informatics Association
9.6 (2002), pp. 600-611.

[2] Pouya Ataei and Alan Litchfield. “The state of big data reference architectures: A
systematic literature review”. In: IEEE Access 10 (2022), pp. 113789-113807.

[3] IPutu Medagia Atmaja, Ari Saptawijaya, Siti Aminah, et al. “Implementation of
change data capture in ETL process for data warehouse using HDFS and apache
spark”. In: 2017 International Workshop on Big Data and Information Security
(IWBIS). IEEE. 2017, pp. 49-55.

[4] Zhamak Dehghani. Data Mesh. Marcombo, 2022.

[5] MI Gabr, YM Helmy, and DS Elzanfaly. “Data quality dimensions, metrics, and
improvement techniques”. In: Future Comput. Inf. J 6 (2021), pp. 25-44.

[6] Boris Glavic et al. “Data provenance”. In: Foundations and Trends® in Databases
9.3-4 (2021), p. 3.

[71 Anders Haug and Jan Stentoft Arlbjgrn. “Barriers to master data quality”. In: Journal
of Enterprise Information Management 24.3 (2011), pp. 288-303.

[8] Wei Hu and Junkang Feng. “Data and information quality: an information-theoretic
perspective”. In: Computing and Information Systems 9.3 (2005), p. 32.

[9] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. “Data clustering: a review”.
In: ACM computing surveys (CSUR) 31.3 (1999), p. 270.



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Vladan Jovanovic and Ivan Bojicic. “Conceptual data vault model”. In: SAIS 2012
Proceedings (2012), pp. 130-136.

Ahmed Kabiri and Dalila Chiadmi. “A method for modelling and organazing ETL
processes”. In: Second International Conference on the Innovative Computing
Technology (INTECH 2012). IEEE. 2012, pp. 138-143.

Godson Koffi Kalipe and Rajat Kumar Behera. “Big Data Architectures: A detailed
and application oriented review”. In: Int. Journal Innov. Technol. Explor. Eng 8
(2019), pp. 2182-2190.

Daniel Linstedt and Michael Olschimke. Building a scalable data warehouse with
data vault 2.0. Morgan Kaufmann, 2015.

Inés Aratdjo Machado, Carlos Costa, and Maribel Yasmina Santos. “Data mesh:
concepts and principles of a paradigm shift in data architectures”. In: Procedia
Computer Science 196 (2022), pp. 263-271.

Barbara Magagna et al. “Data provenance”. In: Towards Interoperable Research
Infrastructures for Environmental and Earth Sciences: A Reference Model Guided
Approach for Common Challenges. Springer, 2020, p. 214.

Kamal Matouk, Mieczyslaw L Owoc, et al. “A survey of data warehouse architec-
tures—Preliminary results”. In: 2012 Federated Conference on Computer Science
and Information Systems (FedCSIS). IEEE. 2012, pp. 1121-1126.

Sedir Mohammed et al. “Data Quality Assessment: Challenges and Opportunities”.
In: arXiv preprint arXiv:2403.00526 (2024).

Barr Moses. “The rise of data observability: Architecting the future of data trust”.
In: Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining. 2022, pp. 1657-1657.

Sonam Ramchand and Tariq Mahmood. “Big data architectures for data lakes: A
systematic literature review”. In: 2022 IEEE 46th Annual Computers, Software, and
Applications Conference (COMPSAC). IEEE. 2022, pp. 1141-1146.

Dhamotharan Seenivasan and Muthukumaran Vaithianathan. “Real-Time Adaptation:
Change Data Capture in Modern Computer Architecture”. In: ESP International
Journal of Advancements in Computational Technology 1.2 (2023), pp. 49-61.

Sing What Tee et al. “Data quality initiatives: striving for continuous improvements”.
In: International Journal of Information Quality 1.4 (2007), pp. 347-367.

Mubarak Albarka Umar and Chen Zhanfang. “A comparative study of dynamic
software testing techniques”. In: International Journal of Advanced Networking and
Applications 12.3 (2020), pp. 4575-4584.

Yair Wand and Richard Y Wang. “Anchoring data quality dimensions in ontological
foundations”. In: Communications of the ACM 39.11 (1996), pp. 86-95.



[24]

[25]

[26]

[27]

Jingran Wang et al. “Overview of data quality: Examining the dimensions, antecedents,
and impacts of data quality”. In: Journal of the Knowledge Economy 15.1 (2024),
pp- 1159-1178.

Richard Y Wang. “A product perspective on total data quality management”. In:
Communications of the ACM 41.2 (1998), pp. 58—-65.

Richard Y Wang and Diane M Strong. “Beyond accuracy: What data quality means
to data consumers”. In: Journal of management information systems 12.4 (1996),
pp- 5-33.

Qishan Yang, Mouzhi Ge, and Markus Helfert. “Analysis of data warehouse archi-
tectures: modeling and classification”. In: The 21st International Conference on
Enterprise Information Systems (2019), pp. 3-5.



